

EUROPEAN COMMISSION

> Brussels, 6.3.2024 C(2024) 1356 final

ANNEX

# ANNEX

to the

**Commission Delegated Regulation (EU)** 

supplementing Regulation (EU) No 305/2011 of the European Parliament and of the Council by establishing classes of performance in relation to the resistance to fire of construction products

# <u>ANNEX</u>

### A. SYMBOLS

For the purposes of this Annex the following symbols apply:

| R    | Load-bearing capacity                                                         |                                                                                   |
|------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Е    | Integrity                                                                     |                                                                                   |
| I    | Insulation                                                                    |                                                                                   |
| W    | Radiation                                                                     |                                                                                   |
| М    | Mechanical action                                                             |                                                                                   |
| С    | Self-closing                                                                  |                                                                                   |
| C0-5 | Durability of self-closing:<br>Use category (C)<br>5<br>4<br>3<br>2<br>1<br>0 | Number of cycles<br>≥ 200 000<br>≥ 100000<br>≥ 50 000<br>≥ 10 000<br>≥ 500<br>≥ 1 |
| S    | Smoke leakage (in context of ve context of doors)                             | ntilation systems) / Smoke control (in                                            |
| Р    | Continuity of power and signal s temperature curve                            | supply under the standard time                                                    |
| РН   | Continuity of power and signal s                                              | supply under constant temperature                                                 |
| G/O  | Soot fire resistance                                                          |                                                                                   |
| K    | Fire protection ability                                                       |                                                                                   |
| Т    | Temperature class expressed in a (operating temperature)                      | maximum gas temperature in °C                                                     |
| D    | Stability duration under constant                                             | t temperature                                                                     |
| DH   | Stability duration under the stan                                             | dard time-temperature curve                                                       |
| F    | Functionality of powered smoke                                                | and heat ventilators                                                              |
| В    | Functionality of natural smoke a                                              | and heat ventilators                                                              |
|      |                                                                               |                                                                                   |

### B. Classes of performance in relation to the resistance to fire of construction products

### General

The relevant definitions, tests and performance criteria are fully described or referenced in the European resistance to fire classification standards, harmonised European product standards, European testing standards, and relevant parts of Eurocodes.

If for asymmetrical elements the declared class of the element is only valid from one side, the class shall be accompanied by this information.

The following classes of performance are expressed in minutes unless otherwise specified.

### 1. Load-bearing elements without a fire-separating function

#### Table 1

| Applies to | Walls, f | loors, rais | ed floors, | roofs, bea | ms, colun | nns, balcor | nies, walky | ways, staiı | s   |     |     |
|------------|----------|-------------|------------|------------|-----------|-------------|-------------|-------------|-----|-----|-----|
| R          |          | 15          | 20         | 30         | 45        | 60          | 90          | 120         | 180 | 240 | 360 |

#### 2. Load-bearing elements with a fire-separating function

| Applies to | Walls | Walls |    |    |    |    |    |     |     |     |     |  |  |  |
|------------|-------|-------|----|----|----|----|----|-----|-----|-----|-----|--|--|--|
| RE         |       | 15    | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |  |
| REI        |       | 15    | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |  |
| REI-M      |       | 15    | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |  |
| REW        |       | 15    | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |  |

| Table 2.2  |                    |                                                             |                              |                              |                       |              |           |     |     |     |     |  |  |
|------------|--------------------|-------------------------------------------------------------|------------------------------|------------------------------|-----------------------|--------------|-----------|-----|-----|-----|-----|--|--|
| Applies to | Floors,            | Floors, roofs, roof windows, rooflights and shutters        |                              |                              |                       |              |           |     |     |     |     |  |  |
| RE         |                    | 15                                                          | 20                           | 30                           | 45                    | 60           | 90        | 120 | 180 | 240 | 360 |  |  |
| REI        |                    | 15                                                          | 20                           | 30                           | 45                    | 60           | 90        | 120 | 180 | 240 | 360 |  |  |
| С          | manuall<br>Optiona | lassificatio<br>y closed fo<br>lly, for dur<br>ng to the us | or the purpo<br>ability of s | ose of the t<br>self-closing | test.<br>g, the C cla | assification | may be co |     |     |     |     |  |  |

| Table 2.3  | -                                 |                         |                                           |                                           |                                         |                                        |          |           |                                           |             |     |  |
|------------|-----------------------------------|-------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------|----------|-----------|-------------------------------------------|-------------|-----|--|
| Applies to | Raised floors                     |                         |                                           |                                           |                                         |                                        |          |           |                                           |             |     |  |
| RE         |                                   | 15                      | 20                                        | 30                                        | 45                                      | 60                                     | 90       | 120       | 180                                       | 240         | 360 |  |
| REI        |                                   | 15                      | 20                                        | 30                                        | 45                                      | 60                                     | 90       | 120       | 180                                       | 240         | 360 |  |
| Notes      | refers to<br>constant<br>Raised f | standard t<br>temperatu | emperature<br>re attack o<br>fying the st | e/time curv<br>f 500 °C (i<br>tandard ter | ve exposur<br>reduced ex<br>mperature/f | e (full fire<br>posure).<br>time curve | exposure | whereas i | e of the des<br>ts presence<br>time are c | e refers to | the |  |

#### 3. Products and systems for protecting load-bearing elements

Table 3.1

| Applies to                     | Ceilings with no independent fire resistance                                                                      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Assessment of the contribution | on to the fire resistance of structural members: Expressed in terms of classification of the load-bearing element |

| being protected. |                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------|
| Notes            | If satisfying the criteria with regard to the 'semi-natural' fire, the symbol 'sn' is added to the classification. |
|                  |                                                                                                                    |
| Table 3.2        |                                                                                                                    |

Assessment of the contribution to the fire resistance of structural members: Expressed in terms of classification of the load-bearing element being protected.

| Notes | For coatings, if satisfying the criteria with regard to the 'slow heating' curve, the symbol 'IncSlow' is added to the classification. |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|
|-------|----------------------------------------------------------------------------------------------------------------------------------------|

### 4. Non-loadbearing elements or products with a fire-separating function

| Table 4.1  |                                                                                        |    |    |    |    |    |    |     |     |     |     |  |
|------------|----------------------------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|-----|-----|--|
| Applies to | Partitions (including partitions incorporating uninsulated portions) and fixed windows |    |    |    |    |    |    |     |     |     |     |  |
| Е          |                                                                                        | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| EI         |                                                                                        | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| EI-M       |                                                                                        | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| EW         |                                                                                        | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |

### Table 4.2

| Applies to | Unloaded roofs |    |    |    |    |    |    |     |     |     |     |  |
|------------|----------------|----|----|----|----|----|----|-----|-----|-----|-----|--|
| Е          |                | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| EI         |                | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| EW         |                | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |

### Table 4.3

| Applies to | Cavity barriers       |              |            |             |             |              |             |            |            |              |     |  |
|------------|-----------------------|--------------|------------|-------------|-------------|--------------|-------------|------------|------------|--------------|-----|--|
| Е          |                       | 15           | 20         | 30          | 45          | 60           | 90          | 120        | 180        | 240          | 360 |  |
| EI         |                       | 15           | 20         | 30          | 45          | 60           | 90          | 120        | 180        | 240          | 360 |  |
| Notes      | The clas<br>barriers. | sification i | s complete | ed by a sep | arate indic | ation, if sa | tisfying th | e sudden e | xposure te | st for cavit | ty  |  |

Table 4.4

| Applies to | Ceilings | Ceilings with independent fire resistance |  |  |  |             |             |              |             |             |         |  |  |
|------------|----------|-------------------------------------------|--|--|--|-------------|-------------|--------------|-------------|-------------|---------|--|--|
| EI         |          | 15 20 30 45 60 90 120 180 240 360         |  |  |  |             |             |              |             |             |         |  |  |
| Notes      |          | sification i<br>or from be                |  |  |  | the element | nt has beer | i tested, an | d refers to | a fire from | 1 above |  |  |

# Table 4.5

| Applies to | Facades (curtain walls) and external walls (including glazed elements) |    |    |    |    |    |    |     |     |     |     |  |
|------------|------------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|-----|-----|--|
| Е          |                                                                        | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |

| EI    |           | 15          | 20         | 30         | 45         | 60          | 90                                     | 120         | 180          | 240         | 360 |
|-------|-----------|-------------|------------|------------|------------|-------------|----------------------------------------|-------------|--------------|-------------|-----|
| EW    |           | 15          | 20         | 30         | 45         | 60          | 90                                     | 120         | 180          | 240         | 360 |
| Notes | and fulfi | ls the requ | irements f | rom the in | side only; | from the or | to indicat<br>utside only<br>formed on | ; or from t | ooth sides i | respectivel | у.  |

Table 4.6

| Applies to | Non-me                                 | chanical f                                           | ire barrie                        | rs for ven                           | tilation du                  | ictwork      |             |                          |                                                            |             |     |
|------------|----------------------------------------|------------------------------------------------------|-----------------------------------|--------------------------------------|------------------------------|--------------|-------------|--------------------------|------------------------------------------------------------|-------------|-----|
| Е          |                                        | 15                                                   | 20                                | 30                                   | 45                           | 60           | 90          | 120                      | 180                                                        | 240         | 360 |
| EI         |                                        | 15                                                   | 20                                | 30                                   | 45                           | 60           | 90          | 120                      | 180                                                        | 240         | 360 |
| Notes      | a) be<br>b) ach<br>the fin<br>There is | tested from<br>tieve 360 n<br>te test.<br>no S class | n both side<br>$n^{3}/(m^{2}h)$ m | s, and<br>naximum le<br>or this proc | eakage rate<br>luct, as it h | e with refer | rence to no | ominal duc<br>rature smo | cal fire barn<br>t cross-sec<br>oke perform<br>contal use. | tional area |     |

### Table 4.7

| Applies to | Penetration seals                |                           |                                       |             |            |             |             |            |             |                                         |      |  |
|------------|----------------------------------|---------------------------|---------------------------------------|-------------|------------|-------------|-------------|------------|-------------|-----------------------------------------|------|--|
| Е          |                                  | 15                        | 20                                    | 30          | 45         | 60          | 90          | 120        | 180         | 240                                     | 360  |  |
| EI         |                                  | 15                        | 20                                    | 30          | 45         | 60          | 90          | 120        | 180         | 240                                     | 360  |  |
| Notes      | function<br>The clas<br>dependin | being pen<br>sification o | etrated.<br>of pipe per<br>ested pipe | etration se | als is com | pleted by t | he addition | n of "U/U" | ", "C/U", " | fire-separa<br>U/C", or "<br>spectively | C/C" |  |

# Table 4.8

| Applies to | Combin                                                                                                   | ed penetra | ation seals            | 5  |    |    |    |     |     |                           |     |
|------------|----------------------------------------------------------------------------------------------------------|------------|------------------------|----|----|----|----|-----|-----|---------------------------|-----|
| Е          |                                                                                                          | 15         | 20                     | 30 | 45 | 60 | 90 | 120 | 180 | 240                       | 360 |
| EI         | 15         20         30         45         60         90         120         180         240         30 |            |                        |    |    |    |    |     |     |                           |     |
| Notes      | function<br>The clas                                                                                     | being pen  | etrated.<br>hall be co |    |    |    |    | C   |     | fire-separa<br>d elements | C   |

### Table 4.9

| 1 able 4.9 |            |                             |                          |              |                             |                                                           |             |     |     |     |     |
|------------|------------|-----------------------------|--------------------------|--------------|-----------------------------|-----------------------------------------------------------|-------------|-----|-----|-----|-----|
| Applies to | Linear j   | joint seals                 |                          |              |                             |                                                           |             |     |     |     |     |
| Е          |            | 15                          | 20                       | 30           | 45                          | 60                                                        | 90          | 120 | 180 | 240 | 360 |
| EI         |            | 15                          | 20                       | 30           | 45                          | 60                                                        | 90          | 120 | 180 | 240 | 360 |
| Notes      | — "F<br>(H | I", or "V",<br>lorizontal s | or "T" ind<br>supporting | licating the | at the class<br>on; Vertica | the symbol<br>ification is<br>al supportin<br>spectively) | valid for t |     |     |     |     |

|   | "M", or "F", or "B" indicating the type of splices (Manufactured; Field; or Both manufactured and field respectively),                                                                  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| — | "X"; or "Mxxx" indicating the movement capability (No movement; or Movement induced (in %) respectively), including the subscript "lat" or "shear" indicating the induced movement, and |
| — | "W w1 to w2" indicating the joint width range (in mm) for which the classification criterion is satisfied (w1 being the lower width and w2 the higher width limit).                     |

### Table 4.10

| Applies to           | Fire resisting doorsets, openable windows (in walls and roofs), openable rooflights and shutter (including those that incorporate glazing, closing devices and other building hardware)         15       20       30       45       60       90       120       180       240       360                                                     |                         |            |             |             |                |              |               |             |               |                   |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|-------------|-------------|----------------|--------------|---------------|-------------|---------------|-------------------|--|
| E                    |                                                                                                                                                                                                                                                                                                                                             | 15                      | 20         | 30          | 45          | 60             | 90           | 120           | 180         | 240           | 360               |  |
| EI                   |                                                                                                                                                                                                                                                                                                                                             | 15                      | 20         | 30          | 45          | 60             | 90           | 120           | 180         | 240           | 360               |  |
| EW                   | 15 20 30 45 60 90 120 180 240 360                                                                                                                                                                                                                                                                                                           |                         |            |             |             |                |              |               |             |               |                   |  |
| S <sub>200</sub>     | For elen                                                                                                                                                                                                                                                                                                                                    | nents and p             | roducts ha | aving passo | ed smoke c  | ontrol crit    | eria depen   | ding on tes   | t conditior | ns fulfilled. |                   |  |
| $S_{a3}$ or $S_{a4}$ | For elements and products having passed smoke control criteria depending on test conditions fulfilled.                                                                                                                                                                                                                                      |                         |            |             |             |                |              |               |             |               |                   |  |
| С                    | The C classification may be declared where a self-closing device is fitted and the element or product was manually closed for the purpose of the test.<br>Optionally, for durability of self-closing, the C classification may be complemented by the digits 0 to 5 according to the use category where cycle testing has been carried out. |                         |            |             |             |                |              |               |             |               |                   |  |
|                      |                                                                                                                                                                                                                                                                                                                                             | classification is used. | on is comp | leted by th | e addition  | of the suff    | ñx '1' or '2 | ' to indicate | e which de  | finition of   |                   |  |
| Notes                |                                                                                                                                                                                                                                                                                                                                             | ase the clas            |            |             | over heatin | g on both      | the closing  | g and the op  | pening fac  | e, this shal  | l be              |  |
|                      | This tab                                                                                                                                                                                                                                                                                                                                    | le does not             | include o  | r address p | roducts for | r smoke ve     | entilation.  |               |             |               |                   |  |
|                      | Addition                                                                                                                                                                                                                                                                                                                                    | nal smoke o             | ontrol ala | adification | of large in | بابر المتسادين |              |               | o lookogo l | :             | m <sup>3</sup> /h |  |

# Table 4.11

| Applies to | Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                | s for conv | eyers and | track bou | nd transp | ortation s | ystems |     |     |     |     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|------------|--------|-----|-----|-----|-----|
| Е          |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15         | 20        | 30        | 45        | 60         | 90     | 120 | 180 | 240 | 360 |
| EI         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15         | 20        | 30        | 45        | 60         | 90     | 120 | 180 | 240 | 360 |
| EW         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15         | 20        | 30        | 45        | 60         | 90     | 120 | 180 | 240 | 360 |
| С          | The C classification may be declared where a self-closing device is fitted and the element or product was not manually closed for the purpose of the test.<br>Optionally, for durability of self-closing, the C classification may be complemented by the digits 0 to 5 according to the use category where cycle testing has been carried out.                                                                                                        |            |           |           |           |            |        |     |     |     |     |
| Notes      | The EI classification is completed by the addition of the suffix '1' or '2' to indicate which definition of insulation is used. An EI classification shall be generated for those cases where the test specimen is a pipe or duct configuration with no assessment of the closure for the conveyor system.<br>Sustained operational capability of any clearing device and/or any separating device for a conveyor system is identified by using a "T". |            |           |           |           |            |        |     |     |     |     |

# Table 4.12

| Applies to | Air tran | sfer grille                       | s  |    |    |    |    |     |     |     |     |
|------------|----------|-----------------------------------|----|----|----|----|----|-----|-----|-----|-----|
| E          |          | 15 20 30 45 60 90 120 180 240 360 |    |    |    |    |    |     |     |     |     |
| EI         |          | 15                                | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |

| EW    |                      | 15 | 20         | 30          | 45          | 60          | 90            | 120         | 180          | 240         | 360       |
|-------|----------------------|----|------------|-------------|-------------|-------------|---------------|-------------|--------------|-------------|-----------|
| Notes | If satisfy classific |    | teria with | regard to i | ntegrity du | ring the op | oen state, tl | he symbol   | ʻresist flar | ne' is adde | ed to the |
| Notes | If satisfy classific | 0  | teria with | regard to t | he 'smolde  | ring' curve | , the symb    | ol 'IncSlov | v' is added  | to the      |           |

### Table 4.13

| Applies to | Service   | ducts and                                  | shafts     |             |           |    |    |     |     |     |     |
|------------|-----------|--------------------------------------------|------------|-------------|-----------|----|----|-----|-----|-----|-----|
| Е          |           | 15                                         | 20         | 30          | 45        | 60 | 90 | 120 | 180 | 240 | 360 |
| EI         |           | 15                                         | 20         | 30          | 45        | 60 | 90 | 120 | 180 | 240 | 360 |
| Notes      | the outsi | sification o<br>de '(o→i)'<br>for vertical | or both '( | (i ↔o)'. In | addition, |    |    |     |     |     |     |

### Table 4.14

| Applies to | Chimneys  |                                                                  |    |    |    |    |    |     |     |     |     |  |
|------------|-----------|------------------------------------------------------------------|----|----|----|----|----|-----|-----|-----|-----|--|
|            | G + dista | G + distance in mm (e.g. G 50) or O + distance in mm (e.g. O 50) |    |    |    |    |    |     |     |     |     |  |
| Е          |           | 15                                                               | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| EI         |           | 15                                                               | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |

| T (operating temperature) in ℃ | 80                    | 100 | 120         | 140        | 160        | 200         | 250 | 300 | 400 | 450         | 600     |
|--------------------------------|-----------------------|-----|-------------|------------|------------|-------------|-----|-----|-----|-------------|---------|
| Notes                          | The clas<br>'(i ↔o)'. |     | lefines how | w the elem | ent has be | en tested a |     |     |     | ide '(o→i)' | or both |

### Table 4.15

| Applies to     | Wall and ceiling coverings |                                                                                                                                  |    |    |    |    |    |     |     |     |     |  |  |
|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|-----|-----|-----|-----|--|--|
| Kı             | 10                         | 15                                                                                                                               | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |
| K <sub>2</sub> | 10                         | 15                                                                                                                               | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |
| Notes          |                            | The suffixes '1' and '2' indicate which substrates, fire behaviour criteria and extension rules are used in this classification. |    |    |    |    |    |     |     |     |     |  |  |

### 5. Products for use in ventilation systems (excluding smoke and heat exhaust ventilation)

| Table 5.1  |                       |                                                                                                                         |    |    |    |    |    |     |     |     |     |  |
|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|-----|-----|-----|-----|--|
| Applies to | Fire res              | Fire resisting ventilation ducts                                                                                        |    |    |    |    |    |     |     |     |     |  |
| Е          |                       | 15                                                                                                                      | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| EI         |                       | 15                                                                                                                      | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| S          | 10 m <sup>3</sup> /(r | 10 m <sup>3</sup> /(m <sup>2</sup> h) maximum leakage rate with reference to the duct surface area during the fire test |    |    |    |    |    |     |     |     |     |  |

|       | In addition to meeting the requirements related to integrity (E) the duct must also achieve 15 m <sup>3</sup> /(m <sup>2</sup> h) maximum leakage rate with reference to duct surface area during the fire test. |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes | The classification defines how the element has been tested and refers to a fire from the inside $(i \rightarrow 0)'$ or from the outside $(o \rightarrow i)'$ or both $(i \leftrightarrow 0)'$ .                 |
|       | 've' and/or 'ho' show the product is intended to be used for vertical and/or horizontal use.                                                                                                                     |
|       | The classification shall indicate the pressure difference used in the test.                                                                                                                                      |

### Table 5.2

| Applies to | Fire dampers                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                 |                                                                               |                                                                    |                                                          |                                                         |                          |                                                                       |            |     |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------|-----------------------------------------------------------------------|------------|-----|--|--|
| Е          |                                                                                                                                                                                                                                                              | 15                                                                                                               | 20                                                                                              | 30                                                                            | 45                                                                 | 60                                                       | 90                                                      | 120                      | 180                                                                   | 240        | 360 |  |  |
| EI         |                                                                                                                                                                                                                                                              | 15                                                                                                               | 20                                                                                              | 30                                                                            | 45                                                                 | 60                                                       | 90                                                      | 120                      | 180                                                                   | 240        | 360 |  |  |
| S          | <ul> <li>200 m<sup>3</sup>/(m<sup>2</sup>h) maximum leakage rate with reference to nominal duct cross sectional area:</li> <li>a) smallest size at ambient temperature;</li> <li>b) largest size at ambient temperature and during the fire test.</li> </ul> |                                                                                                                  |                                                                                                 |                                                                               |                                                                    |                                                          |                                                         |                          |                                                                       |            |     |  |  |
| Notes      | a) be t<br>b) ach<br>the fir<br>'ve' and/o<br>floor mo<br>"H" indi<br>classific:<br>"V" ind                                                                                                                                                                  | ested from<br>ieve 360 n<br>e test.<br>or 'ho' show<br>unted) use<br>cates a fire<br>ation perio<br>icates a fir | a both side<br>n <sup>3</sup> /(m <sup>2</sup> h) m<br>v the produ-<br>d having a<br>e damper c | s, and<br>aximum le<br>uct is inter<br>apable of s<br>horizonta<br>capable of | eakage rate<br>ded to be<br>atisfying i<br>blade axi<br>satisfying | e with refer<br>used for ve<br>ntegrity (E<br>s or geome | ertical (e.g.<br>E), or integr<br>etry.<br>E), or integ | minal duc<br>., wall mou | all also:<br>t cross sec<br>unted) and<br>sulation (E<br>nsulation (I | or horizon | U   |  |  |

### 6. Products to be used within electrical, power control and communication building service installations

| Table | 6.1 |
|-------|-----|
| Lanc  | U.I |

| Applies to | Fire protective systems for cable systems and associated components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р          | 15 20 30 45 60 90 120 180 240 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Notes      | <ul> <li>The classification shall indicate:</li> <li>The type of cables which can be installed within the fire protective systems, i.e. any standard cable or only specific cables; and</li> <li>the cables configurations which can be protected and the operating voltage, i.e;</li> <li>either to all types of power cables (rated voltage 300/500 V) for an operating voltage up to 230/400 V (three-phase AC);</li> <li>either to all types of power cables (rated voltage 450/750 V up to 0,6/1 kV) for an operating voltage up to 400/690 V (Three-phase AC);</li> <li>either to all types of signal-/control cables (rated voltage up to 170 V) for an operating voltage up to 110 V;</li> <li>or any combination of the above possibilities.</li> </ul> |

| Applies to      | Unprotected electric, power control and communication cables with intrinsic fire resistance |                            |    |            |             |             |             |            |            |             |       |  |  |
|-----------------|---------------------------------------------------------------------------------------------|----------------------------|----|------------|-------------|-------------|-------------|------------|------------|-------------|-------|--|--|
| P <sub>ca</sub> |                                                                                             | 15                         | 20 | 30         | 45          | 60          | 90          | 120        | 180        | 240         | 360   |  |  |
| Notes           |                                                                                             | er cables a<br>re satisfie |    | cables the | classificat | ion shall i | ndicate for | which rate | ed voltage | the perform | mance |  |  |

Table 6.3

| Applies to       | Unprote<br>mm dia | Unprotected small electric, power control and communication cables with intrinsic fire resistance (<20 mm diameter and with conductor sizes $\leq 2.5 \text{ mm}^2$ ) |    |            |             |               |             |            |            |             |       |  |
|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|-------------|---------------|-------------|------------|------------|-------------|-------|--|
| PH <sub>ca</sub> |                   | 15                                                                                                                                                                    | 20 | 30         | 45          | 60            | 90          | 120        | 180        | 240         | 360   |  |
| Notes            |                   | er cables a<br>re satisfied                                                                                                                                           |    | cables the | classificat | tion shall ii | ndicate for | which rate | ed voltage | the perform | mance |  |

### 7. Products to be used in smoke and heat control systems

# Table 7.1

| Applies to       | Single compartment smoke control ducts |                                                                                                                                                                                                                                                                                                                                              |    |             |            |                                                                                                                                                |    |     |     |     |     |  |  |  |  |  |  |  |
|------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|-----|-----|--|--|--|--|--|--|--|
| E <sub>600</sub> |                                        | 15                                                                                                                                                                                                                                                                                                                                           | 20 | 30          | 45         | 60                                                                                                                                             | 90 | 120 | 180 | 240 | 360 |  |  |  |  |  |  |  |
| S                | · · ·                                  | $5 \text{ m}^3/(\text{m}^2\text{h})$ maximum leakage rate with reference to duct surface area at ambient temperature and $5 \text{ m}^3/(\text{m}^2\text{h})$ maximum leakage rate related to the duct surface area during the fire test.                                                                                                    |    |             |            |                                                                                                                                                |    |     |     |     |     |  |  |  |  |  |  |  |
|                  | maximui                                | In addition to meeting the requirements related to integrity (E) the duct must also achieve 10 m <sup>3</sup> /(m <sup>2</sup> h) maximum leakage rate with reference to duct surface area during the fire test.<br>The classification is completed by the suffix 'single' for products intended to be used for single compartment use only. |    |             |            |                                                                                                                                                |    |     |     |     |     |  |  |  |  |  |  |  |
| Notes            |                                        | 've' and/or 'ho' show the product is intended to be used for vertical and/or horizontal use, within the compartment.                                                                                                                                                                                                                         |    |             |            |                                                                                                                                                |    |     |     |     |     |  |  |  |  |  |  |  |
|                  |                                        |                                                                                                                                                                                                                                                                                                                                              |    | e product i | s intended | '500', '1 000', '1 500' show the product is intended to be used up to these values of under-pressure, measured i<br>Pa at ambient temperature. |    |     |     |     |     |  |  |  |  |  |  |  |

### Table 7.2

| Applies to                                                                                                                       | Multi-co                                   | Multi-compartment fire resistant smoke control ducts                                                                                                                                                                                      |                                         |                                            |                                          |                                                            |                                          |                                        |             |            |       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------|------------|-------|--|--|--|
| Е                                                                                                                                |                                            | 15                                                                                                                                                                                                                                        | 20                                      | 30                                         | 45                                       | 60                                                         | 90                                       | 120                                    | 180         | 240        | 360   |  |  |  |
| EI                                                                                                                               |                                            | 15                                                                                                                                                                                                                                        | 20                                      | 30                                         | 45                                       | 60                                                         | 90                                       | 120                                    | 180         | 240        | 360   |  |  |  |
| S                                                                                                                                | · · · ·                                    | $5 \text{ m}^3/(\text{m}^2\text{h})$ maximum leakage rate with reference to duct surface area at ambient temperature and $5 \text{ m}^3/(\text{m}^2\text{h})$ maximum leakage rate related to the duct surface area during the fire test. |                                         |                                            |                                          |                                                            |                                          |                                        |             |            |       |  |  |  |
| Notes                                                                                                                            | maximur<br>The class<br>use.<br>'ve' and/o | n leakage<br>sification i<br>or 'ho' shov                                                                                                                                                                                                 | rate with r<br>s complete<br>w the prod | eference to<br>ed by the s<br>uct is inter | o duct surf<br>uffix 'mult<br>nded to be | integrity ()<br>ace area du<br>i' for produ<br>used for ve | uring the fincts intender the trical and | re test.<br>ed to be us<br>'or horizon | sed for mul | ti-compart | tment |  |  |  |
| '500', '1 000', '1 500' show the product is intended to be used up to these values of under-pressure, Pa at ambient temperature. |                                            |                                                                                                                                                                                                                                           |                                         |                                            |                                          |                                                            |                                          |                                        | essure, mea | isured in  |       |  |  |  |

### Table 7.3

| Applies to       | Single compartment smoke control dampers                                                                                                                                                                                                                     |    |    |    |    |    |    |     |     |     |     |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|-----|-----|--|--|
| E <sub>600</sub> |                                                                                                                                                                                                                                                              | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |
| S                | <ul> <li>200 m<sup>3</sup>/(m<sup>2</sup>h) maximum leakage rate with reference to nominal duct cross sectional area:</li> <li>a) smallest size at ambient temperature;</li> <li>b) largest size at ambient temperature and during the fire test.</li> </ul> |    |    |    |    |    |    |     |     |     |     |  |  |
| Notes            | In addition to meeting the requirements related to integrity (E) the single compartment smoke control damper shall also:<br>a) be tested from both sides,<br>b) pass a maintenance of opening test, and                                                      |    |    |    |    |    |    |     |     |     |     |  |  |

| c) achieve 360 m <sup>3</sup> /(m <sup>2</sup> h) maximum leakage rate with reference to nominal duct cross sectional area during the fire test                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) smallest size at ambient temperature, and                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2) largest size at ambient temperature and during the fire test.                                                                                                                                                                                                                                                                                                                                                                                                              |
| The classification is completed by the suffix 'single' for products intended for single compartment use.                                                                                                                                                                                                                                                                                                                                                                      |
| 'ved', 'vew', 'vedw' and/or 'hod', 'how', 'hodw' show the product is intended to be used for vertical and/or horizontal use, together with mounting in a duct or in a wall/floor or both respectively.                                                                                                                                                                                                                                                                        |
| "H" indicates a single compartment smoke control damper capable of satisfying integrity (E) for the classification period having a horizontal blade axis or geometry,                                                                                                                                                                                                                                                                                                         |
| "V" indicates a single compartment smoke control damper capable of satisfying integrity (E) for the classification period having a vertical blade axis or geometry.                                                                                                                                                                                                                                                                                                           |
| '500', '1000' and '1500' show that the product is intended to be used up to this value of under-pressure in Pa<br>at ambient temperature.                                                                                                                                                                                                                                                                                                                                     |
| 'AA' denotes for use with applications providing automatic activation, 'MA' denotes for use with application requiring manual intervention or providing automatic activation.                                                                                                                                                                                                                                                                                                 |
| $^{\circ}C_{300}$ ', $C_{10000}$ ', $^{\circ}C_{MOD}$ ' or $^{\circ}C_{300}$ (N)', $C_{10000}$ (N)', $^{\circ}C_{MOD}$ (N)' show the product is intended to be used in smoke control only systems, fully controlled smoke control systems and smoke control systems combined with environmental systems or modulating smoke control dampers intended to be used in any system having a controlled or variable position, tested under load, or without load (N), respectively. |
| 'HOT 400/30' (High Operational Temperature) indicates that the single compartment smoke control damper has been subjected to an additional test to demonstrate that it has the ability to be opened and closed during a period of 30 minutes of temperatures up to 400 °C.                                                                                                                                                                                                    |

### Table 7.4

| Applies to | Multi-compartment fire resistant smoke control dampers                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                    |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| Е          |                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                       | 120                                                                                                                                                                                                           | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                                                                                                                                                                      | 360                                                                                |  |  |  |
| EI         |                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                       | 120                                                                                                                                                                                                           | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                                                                                                                                                                      | 360                                                                                |  |  |  |
| S          | a) sma                                                                                                                                                                                                                                                            | 200 m <sup>3</sup> /(m <sup>2</sup> h) maximum leakage rate with reference to nominal duct cross sectional area:<br>a) smallest size at ambient temperature;<br>b) largest size at ambient temperature and during the fire test.                                                                                                                |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                          |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                    |  |  |  |
| Notes      | comparts<br>a) be t<br>b) pas<br>c) ach<br>fire te<br>1) s<br>2) la<br>The class<br>'ved', 've<br>horizont<br>"H" indi<br>integrity<br>"V" indi<br>integrity<br>'500', '1<br>at ambie<br>'AA' dei<br>requiring<br>'C <sub>300</sub> ', C<br>control c<br>environt | ment fire r<br>tested from<br>s a mainte<br>ieve 360 n<br>st<br>mallest siz<br>argest size<br>sification i<br>w', 'vedw'<br>al use, togo<br>cates a mu<br>and insula<br>cates a mu<br>and insula<br>000' and '<br>nt tempera<br>notes for u<br>g manual in<br>c <sub>1000</sub> ', 'C <sub>M</sub><br>mly system<br>nental syst<br>ed or varial | esistant sn<br>a both side<br>nance of o<br>$n^3/(m^2h)$ m<br>e at ambien<br>at ambien<br>s complete<br>and/or 'hc<br>ether with<br>lti-compan-<br>tion (E1) f<br>lti-compan-<br>tion (E1) f<br>lti-compan-<br>tion (E1) f<br>1500' sho<br>ture.<br>se with ap<br>ntervention<br>op or (C <sub>3</sub> )<br>as, fully co<br>ems or mo-<br>oble positio | noke contris,<br>s,<br>pening tes<br>aximum la<br>nt temperat<br>ed by the s<br>d', 'how', '<br>mounting<br>tunent fire<br>for the class<br>tunent fire | ol damper<br>t, and<br>eakage wit<br>ature, and<br>ure and du<br>uffix 'mult<br>hodw' sho<br>in a duct o<br>resistant s<br>sification p<br>product is<br>providing<br>ling autom<br>000(N)', 'C<br>moke cont<br>moke cont<br>nder load, | integrity ()<br>shall also:<br>h reference<br>ring the fir<br>i' for produ<br>w the prod<br>r in a wall/<br>moke cont<br>period havi<br>intended to<br>automatic<br>atic activat<br>'MOD(N)' sh<br>rol systems<br>rol damper<br>or without<br>dicates tha | e to nomin<br>e test.<br>acts intend<br>uct is intend<br>floor or be<br>rol dampe<br>ing a horiz<br>rol dampe<br>ing a verti-<br>b be used u<br>activation,<br>ion.<br>now the pr<br>and smok<br>s intended<br>load (N), | al duct cro<br>ed for mul<br>aded to be<br>oth respect<br>r capable c<br>contal blade<br>r capable c<br>cal blade a<br>up to this v<br>, 'MA' der<br>oduct is in<br>se control s<br>to be usee<br>respectivel | iti-compart<br>used for v<br>ively.<br>of satisfyin<br>e axis or geo<br>f satisfyin<br>xis or geo<br>f satisfyin | I area duri<br>ment use.<br>ertical and<br>g integrity<br>cometry,<br>g integrity<br>netry.<br>der-pressu<br>der-pressu<br>e with app<br>be used in minimed wistem havin | ng the<br>'or<br>(E), or<br>(E), or<br>re in Pa<br>lication:<br>smoke<br>th<br>g a |  |  |  |

| closed during a period of 30 minutes of temperatures up to 400 °C. |
|--------------------------------------------------------------------|
|--------------------------------------------------------------------|

| Table 7.5        |         |          |    |    |    |    |    |     |     |     |     |
|------------------|---------|----------|----|----|----|----|----|-----|-----|-----|-----|
| Applies to       | Smoke l | oarriers |    |    |    |    |    |     |     |     |     |
| D <sub>600</sub> |         | 15       | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |
| DH               |         | 15       | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |

### Table 7.6

| Applies to       | Powered smoke and heat control ventilators (fans), including connectors |    |    |    |    |    |    |     |     |     |     |  |  |
|------------------|-------------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|-----|-----|--|--|
| F <sub>200</sub> |                                                                         | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |
| F <sub>300</sub> |                                                                         | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |
| F <sub>400</sub> |                                                                         | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |
| F <sub>600</sub> |                                                                         | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |
| F <sub>842</sub> |                                                                         | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |  |

### Table 7.7

| Applies to                    | Natural smoke and heat exhaust ventilators                                                                                                                                                 |    |    |    |    |    |    |     |     |     |     |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|-----|-----|--|
| B <sub>300</sub>              |                                                                                                                                                                                            | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| B <sub>600</sub>              |                                                                                                                                                                                            | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| $\mathbf{B}_{\mathbf{	heta}}$ |                                                                                                                                                                                            | 15 | 20 | 30 | 45 | 60 | 90 | 120 | 180 | 240 | 360 |  |
| Notes                         | Where $\theta$ indicates the exposure condition (temperature), higher than 300 °C.<br>These products are designed to open in case of fire and do not have an integrity (E) classification. |    |    |    |    |    |    |     |     |     |     |  |